
ar
X

iv
:1

50
5.

03
88

5v
2 

 [
m

at
h.

A
T

] 
 6

 J
an

 2
01

6

2-TRACK ALGEBRAS AND THE ADAMS SPECTRAL SEQUENCE

HANS-JOACHIM BAUES AND MARTIN FRANKLAND

Dedicated to Ronnie Brown on the occasion of his eightieth birthday.

Abstract. In previous work of the first author and Jibladze, the E3-term of the Adams
spectral sequence was described as a secondary derived functor, defined via secondary chain
complexes in a groupoid-enriched category. This led to computations of the E3-term using
the algebra of secondary cohomology operations. In work with Blanc, an analogous descrip-
tion was provided for all higher terms Er . In this paper, we introduce 2-track algebras and
tertiary chain complexes, and we show that the E4-term of the Adams spectral sequence is
a tertiary Ext group in this sense. This extends the work with Jibladze, while specializing
the work with Blanc in a way that should be more amenable to computations.
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1. Introduction

A major problem in algebraic topology consists of computing homotopy classes of maps
between spaces or spectra, notably the stable homotopy groups of spheres πS∗ (S

0). One of the
most useful tools for such computations is the Adams spectral sequence [1] (and its unstable
analogues [8]), based on ordinary mod p cohomology. Given finite spectra X and Y , Adams
constructed a spectral sequence of the form:

Es,t
2 = Exts,t

A
(H∗(Y ;Fp), H

∗(X ;Fp)) ⇒ [Σt−sX, Y ∧
p ]
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2 HANS-JOACHIM BAUES AND MARTIN FRANKLAND

where A is the mod p Steenrod algebra, consisting of primary stable mod p cohomology
operations, and Y ∧

p denotes the p-completion of Y . In particular, taking sphere spectra

X = Y = S0, one obtains a spectral sequence

Es,t
2 = Exts,t

A
(Fp,Fp) ⇒ πSt−s(S

0)∧p

abutting to the p-completion of the stable homotopy groups of spheres. The differential dr
is determined by rth order cohomology operations [14]. In particular, secondary cohomology
operations determine the differential d2 and thus the E3-term. The algebra of secondary
operations was studied in [2]. In [3], the first author and Jibladze developed secondary chain
complexes and secondary derived functors, and showed that the Adams E3-term is given
by secondary Ext groups of the secondary cohomology of X and Y . They used this in [5],
along with the algebra of secondary operations, to construct an algorithm that computes the
differential d2.
Primary operations in mod p cohomology are encoded by the homotopy category Ho(K) of

the Eilenberg-MacLane mapping theoryK, consisting of finite products of Eilenberg-MacLane
spectra of the form Σn1HFp × · · · × ΣnkHFp. More generally, the nth Postnikov truncation
PnK of the Eilenberg-MacLane mapping theory encodes operations of order up to n + 1,
which in turn determine the Adams differential dn+1 and thus the En+2-term [4]. However,
PnK contains too much information for practical purposes. In [6], the first author and Blanc
extracted from PnK the information needed in order to compute the Adams differential dn+1.
The resulting algebraic-combinatorial structure is called an algebra of left n-cubical balls.
In this paper, we specialize the work of [6] to the case n = 2. Our goal is to provide

an alternate structure which encodes an algebra of left 2-cubical balls, but which is more
algebraic in nature and better suited for computations. The combinatorial difficulties in an
algebra of left n-cubical balls arise from triangulations of the sphere Sn−1 = ∂Dn. In the
special case n = 2, triangulations of the circle S1 are easily described, unlike in the case
n > 2. Our approach also extends the work in [3] from secondary chain complexes to tertiary
chain complexes.

Organization and main results. We define the notion of 2-track algebra (Definition 5.1)
and show that each 2-track algebra naturally determines an algebra of left 2-cubical balls
(Theorem 9.3). Building on [6], we show that higher order resolutions always exist in a 2-track
algebra (Theorem 8.7). We show that a suitable 2-track algebra related to the Eilenberg-
MacLane mapping theory recovers the Adams spectral sequence up to the E4-term (Theo-
rem 7.3). We show that the spectral sequence only depends on the weak equivalence class of
the 2-track algebra (Theorem 7.5).

Remark 1.1. This last point is important in view of the strictification result for secondary
cohomology operations: these can be encoded by a graded pair algebra B∗ over Z/p

2 [2, §5.5].
The secondary Ext groups of the E3-term turn out to be the usual Ext groups over B∗

[5, Theorem 3.1.1], a key fact for computations. We conjecture that a similar strictification
result holds for tertiary operations, i.e., in the case n = 2.

Appendix A explains why 2-track groupoids are not models for homotopy 2-types, and
how to extract the underlying 2-track groupoid from a bigroupoid or a double groupoid.

Acknowledgments. We thank the referee for their helpful comments. The second author
thanks the Max-Planck-Institut für Mathematik Bonn for its generous hospitality, as well as
David Blanc, Robert Bruner, Dan Christensen, and Dan Isaksen for useful conversations.
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2. Cubes and tracks in a space

In this section, we fix some notation and terminology regarding cubes and groupoids.

Definition 2.1. Let X be a topological space.
An n-cube in X is a map a : In → X , where I = [0, 1] is the unit interval. For example,

a 0-cube in X is a point of X , and a 1-cube in X is a path in X .
An n-cube can be restricted to (n − 1)-cubes along the 2n faces of In. For 1 ≤ i ≤ n,

denote:

d0i (a) = a restricted to I × I × . . .×

i︷︸︸︷
{0} × . . .× I

d1i (a) = a restricted to I × I × . . .×

i︷︸︸︷
{1} × . . .× I.

An n-track in X is a homotopy class, relative to the boundary ∂In, of an n-cube. If
a : In → X is an n-cube in X , denote by {a} the corresponding n-track in X , namely the
homotopy class of a rel ∂In.

In particular, for n = 1, a 1-track {a} is a path homotopy class, i.e., a morphism in the
fundamental groupoid of X from a(0) to a(1). Let us fix our notation regarding groupoids.
In this paper, we consider only small groupoids.

Notation 2.2. A groupoid is a (small) category in which every morphism is invertible.
Denote the data of a groupoid by G =

(
G0, G1, δ0, δ1, id

� ,� , (−)⊟
)
, where:

• G0 = Ob(G) is the set of objects of G.
• G1 = Hom(G) is the set of morphisms of G. The set of morphisms from x to y is
denoted G(x, y). We write x ∈ G and deg(x) = 0 for x ∈ G0, and deg(x) = 1 for
x ∈ G1.

• δ0 : G1 → G0 is the source map.
• δ1 : G1 → G0 is the target map.
• id� : G0 → G1 sends each object x to its corresponding identity morphism id�

x .
• � : G1 ×G0 G1 → G1 is composition in G.
• f⊟ : y → x is the inverse of the morphism f : x→ y.

Groupoids form a category Gpd, where morphisms are functors between groupoids.
For any object x ∈ G0, denote by AutG(x) = G(x, x) the automorphism group of x.
Denote by Comp(G) = π0(G) the components of G, i.e., the set of isomorphism classes of

objects G0/ ∼.
Denote the fundamental groupoid of a topological space X by Π(1)(X).

Definition 2.3. Let X be a pointed space, with basepoint 0 ∈ X . The constant map
0: In → X with value 0 ∈ X is called the trivial n-cube.
A left 1-cube or left path in X is a map a : I → X satisfying a(1) = 0, that is, d11(a) = 0,

the trivial 0-cube. In other words, a is a path in X from a point a(0) to the basepoint 0. We
denote δa = a(0).
A left 2-cube in X is a map α : I2 → X satisfying α(1, t) = α(t, 1) = 0 for all t ∈ I, that

is, d11(α) = d12(α) = 0, the trivial 1-cube.
More generally, a left n-cube in X is a map α : In → X satisfying α(t1, . . . , tn) = 0

whenever some coordinate satisfies ti = 1. In other words, for all 1 ≤ i ≤ n we have
d1i (α) = 0, the trivial (n− 1)-cube.
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A left n-track in X is a homotopy class, relative to the boundary ∂In, of a left n-cube.

The equality Im+n = Im × In allows us to define an operation on cubes.

Definition 2.4. Let µ : X × X ′ → X ′′ be a map, for example a composition map in a
topologically enriched category C. For m,n ≥ 0, consider cubes

a : Im → X

b : In → X ′.

The ⊗-composition of a and b is the (m+ n)-cube a⊗ b defined as the composite

(2.1) a⊗ b : Im+n = Im × In
a×b
−−→ X ×X ′ µ

−→ X ′′.

For m = n, the pointwise composition of a and b is the n-cube defined as the composite

(2.2) ab : In
(a,b)
−−→ X ×X ′ µ

−→ X ′′.

The pointwise composition is the restriction of the ⊗-composition along the diagonal:

In
∆ //

ab

::In × In
a⊗b // X ′′.

Remark 2.5. For m = n = 0, the 0-cube x ⊗ y = xy is the pointwise composition, which is
the composition in the underlying category. For higher dimensions, there are still relations
between the ⊗-composition and the pointwise composition. In suggestive formulas, pointwise
composition of paths is given by (ab)(t) = a(t)b(t) for all t ∈ I, whereas the ⊗-composition
of paths is the 2-cube given by (a⊗ b)(s, t) = a(s)b(t).

Assume moreover that µ satisfies

µ(x, 0) = µ(0, x′) = 0

for the basepoints 0 ∈ X, 0 ∈ X ′, 0 ∈ X ′′. For example, µ could be the composition map in a
category C enriched in (Top∗,∧), the category of pointed topological spaces with the smash
product as monoidal structure. If a and b are left cubes, then a⊗ b and ab are also left cubes.

3. 2-track groupoids

We now focus on left 2-tracks in a pointed space X , and observe that they form a groupoid.
Define the groupoid Π(2)(X) with object set:

Π(2)(X)0 = set of left 1-cubes in X

and morphism set:

Π(2)(X)1 = set of left 2-tracks in X

where the source δ0 and target δ1 of a left 2-track α : I × I → X are given by restrictions

δ0(α) = d01(α)

δ1(α) = d02(α)
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and note in particular δδ0(α) = δδ1(α) = α(0, 0). In other words, a morphism α from a to b
looks like this:

0

0

δa = δb

OOa=δ0(α)

//
b=δ1(α)

✾✾✾✾ � 
α

Remark 3.1. Up to reparametrization, a left 2-track α : a⇒ b corresponds to a path homotopy
from a to b, which can be visualized in a globular picture:

δa = δb

a

��

b

BB
✤✤ ✤✤
�� α 0.

However, the ⊗-composition will play an important role in this paper, which is why we adopt
a cubical approach, rather than globular or simplicial.

Composition β�α of left 2-tracks is described by the following picture:

(3.1)
0

0

��c

OOa

//
b

❄❄❄❄ �#
α

⑧⑧⑧⑧{� β 0

0

Remark 3.2. To make this definition precise, let α : a⇒ b and β : b⇒ c be left 2-tracks in X ,

i.e., composable morphisms in Π(2)(X). Choose representative maps α̃, β̃ : I2 → X . Consider
the map fα,β : [0, 1]× [−1, 1] → X pictured in (3.1). That is, define

f(s, t) =

{
α̃(s, t) if 0 ≤ t ≤ 1

β̃(−t, s) if − 1 ≤ t ≤ 0.
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Now consider the reparametrization map w : I2 → [0, 1]× [−1, 1] illustrated in this picture:

w //OO GG✎✎✎✎✎✎✎

✎✎✎✎✎✎✎ ??⑧⑧⑧⑧⑧⑧⑧⑧

⑧⑧⑧⑧⑧⑧⑧⑧

77♦♦♦♦♦♦♦

♦♦♦♦♦♦♦

//

OO

OO

??⑧⑧⑧⑧⑧⑧⑧⑧

⑧⑧⑧⑧⑧⑧⑧⑧

//

��❄
❄❄

❄❄
❄❄

❄

❄❄
❄❄

❄❄
❄❄

❄��

Explicitly, the restriction w|∂I2 to the boundary is the piecewise linear map satisfying




w(0, 0) = (0, 0)

w(0, 1) = (0, 1)

w(1
2
, 1) = (1, 1)

w(1, 1) = (1, 0)

w(1, 1
2
) = (1,−1)

w(1, 0) = (0,−1)

and w(x) is defined for points x ∈ I2 in the interior as follows. Write x = p(0, 0) + qy
as a unique convex combination of (0, 0) and a point y on the boundary ∂I2. Then define
w(x) = pw(0, 0) + qw(y) = qw(y). Finally, the composition β�α : a ⇒ c is {fα,β ◦ w}, the
homotopy class of the composite

I2
w // [0, 1]× [−1, 1]

fα,β // X

relative to the boundary ∂I2.
In other notation, we have inclusions d02 : I

1 →֒ I2 as the bottom edge I×{0} and d01 : I
1 →֒

I2 as the left edge {0} × I, our w is a map w : I2 → I2 ∪I1 I
2, and β�α is the homotopy

class of the composite

I2
w // I2 ∪I1 I

2
[α β]

// X.

Given a left path a in X , the identity of a in the groupoid Π(2)(X) is the left 2-track is
pictured here:

0

0OOa GG✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎

a

✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎ ??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

a

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

//
a

❄❄❄❄ �#id
�
a
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More precisely, for points x ∈ I2 in the interior, write x = p(0, 0) + qy as a unique convex
combination of (0, 0) and a point y on the boundary ∂I2. Then define id�

a (x) = a(q).
The inverse α⊟ : b ⇒ a of a left 2-track α : a ⇒ b is the homotopy class of the composite

α ◦ T , where T : I2 → I2 is the map swapping the two coordinates: T (x, y) = (y, x).

Lemma 3.3. Given a pointed topological space X, the structure described above makes
Π(2)(X) into a groupoid, called the groupoid of left 2-tracks in X.

Proof. Standard. �

Definition 3.4. A groupoid G is abelian if the group AutG(x) is abelian for every object
x ∈ G0. The groupoid G is strictly abelian if it is pointed (with basepoint 0 ∈ G0), and is
equipped with a family of isomorphisms

ψx : AutG(x)
≃
−→ AutG(0)

indexed by all objects x ∈ G0, such that the diagram

(3.2) AutG(y)

ψy &&▲▲
▲▲

▲▲
▲▲

▲▲

ϕf

// AutG(x)

ψx

��
AutG(0)

commutes for every map f : x → y in G, where ϕf denotes the “change of basepoint” iso-
morphism

ϕf : AutG(y)
≃
−→ AutG(x)

α 7→ ϕf (α) = f⊟
�α� f.

Remark 3.5. A strictly abelian groupoid is automatically abelian. Indeed, the compatibility
condition (3.2) applied to automorphisms f : 0 → 0 implies that conjugation ϕf : AutG(0) →
AutG(0) is the identity.

Definition 3.6. A groupoid G is pointed if it has a chosen basepoint, i.e., an object 0 ∈ G0.
Here 0 is an abuse of notation: the basepoint is not assumed to be an initial object for G.
The star of a pointed groupoid G is the set of all morphisms to the basepoint 0, denoted

by:

Star(G) = {f ∈ G1 | δ1(f) = 0} .

For a morphism f : x → 0 in Star(G), we write δf = δ0f = x.
If G has a basepoint 0 ∈ G0, then we take id�

0 ∈ G1 as basepoint for the set of morphisms
G1 and for Star(G) ⊆ G1; we sometimes write 0 = id�

0 . Moreover, we take the component of
the basepoint 0 as basepoint for Comp(G), the set of components of G.

Proposition 3.7. Π(2)(X) is a strictly abelian groupoid, and it satisfies CompΠ(2)(X) ≃
StarΠ(1)(X).
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Proof. Let a ∈ Π(2)(X)0 be a left path in X . To any automorphism α : 0 ⇒ 0 in Π(2)(X),
one can associate the well-defined left 2-track indicated by the picture

(3.3) 0

0

0

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

✴✴✴✴
��
α

0
0

0

δa

OOa

//
a

❄❄❄❄ �#id
�
a

0

0

✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎

which is a morphism a ⇒ a. This assignment defines a map AutΠ(2)(X)(0) → AutΠ(2)(X)(a)
and is readily seen to be a group isomorphism, whose inverse we denote ψa. One readily
checks that the family ψa is compatible with change-of-basepoint isomorphisms.
The set CompΠ(2)(X) is the set of left paths in X quotiented by the relation of being

connected by a left 2-track. The set StarΠ(1)(X) is the set of left paths in X quotiented by
the relation of path homotopy. But two left paths are path-homotopic if and only if they are
connected by a left 2-track. �

The bijection CompΠ(2)(X) ≃ StarΠ(1)(X) is induced by taking the homotopy class of
left 1-cubes. Consider the function q : Π(2)(X)0 → Π(1)(X)1 which sends a left 1-cube to its
left 1-track q(a) = {a}. Then the image of q is StarΠ(1)(X) ⊆ Π(1)(X)1 and q is constant
on the components of Π(2)(X)0. We now introduce a definition based on those features of
Π(2)(X).

Definition 3.8. A 2-track groupoid G = (G(1), G(2)) consists of:

• Pointed groupoids G(1) and G(2), with G(2) strictly abelian.
• A pointed function q : G(2)0 ։ StarG(1) which is constant on the components of G(2),

and such that the induced function q : CompG(2)
≃
−→ StarG(1) is bijective.

We assign degrees to the following elements:

deg(x) =





0 if x ∈ G(1)0

1 if x ∈ G(2)0

2 if x ∈ G(2)1

and we write x ∈ G in each case.
A morphism of 2-track groupoids F : G→ G′ consists of a pair of pointed functors

F(1) : G(1) → G′
(1)

F(2) : G(2) → G′
(2)

satisfying the following two conditions.



2-TRACK ALGEBRAS AND THE ADAMS SPECTRAL SEQUENCE 9

(1) (Structural isomorphisms) For every object a ∈ G(2)0, the diagram

AutG(2)
(a)

ψa

��

F(2) // AutG′

(2)
(F(2)a)

ψF(2)a

��
AutG(2)

(0)
F(2)

// AutG′

(2)
(0′)

commutes.
(2) (Quotient functions) The diagram

G(2)0

q

����

F(2) // G′
(2)0

q′

����
StarG(1)

F(1)

// StarG′
(1)

commutes.

Let Gpd(1,2) denote the category of 2-track groupoids.

Remark 3.9. If α : a ⇒ b is a left 2-track in a space, then the left paths a and b have the
same starting point δa = δb. This condition is encoded in the definition of 2-track groupoid.
Indeed, if α : a ⇒ b is a morphism in G(2), then a, b ∈ G(2)0 belong to the same component
of G(2). Thus, we have q(a) = q(b) ∈ StarG(1) and in particular δq(a) = δq(b) ∈ G(1)0.

Definition 3.10. The fundamental 2-track groupoid of a pointed space X is

Π(1,2)(X) :=
(
Π(1)(X),Π(2)(X)

)
.

This construction defines a functor Π(1,2) : Top∗ → Gpd(1,2).

Remark 3.11. The grading on Π(1,2)(X) defined in 3.8 corresponds to the dimension of the
cubes. For x ∈ Π(1,2)(X), we have deg(x) = 0 if x is a point in X , deg(x) = 1 if x is a left
path in X , and deg(x) = 2 if x is a left 2-track in X . This 2-graded set is the left 2-cubical
set Nul2(X) [6, Definition 1.9].

Definition 3.12. Given a 2-track groupoid G, its homotopy groups are

π0G = CompG(1)

π1G = AutG(1)
(0)

π2G = AutG(2)
(0).

Note that π0G is a priori only a pointed set, π1G is a group, and π2G is an abelian group.
A morphism F : G → G′ of 2-track groupoids is a weak equivalence if it induces an

isomorphism on homotopy groups.

Remark 3.13. Let X be a topological space with basepoint x0 ∈ X . Then the homotopy
groups of its fundamental 2-track groupoid G = Π(1,2)(X, x0) are the homotopy groups of the
space πiG = πi(X, x0) for i = 0, 1, 2.

The following two lemmas are straightforward.
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Lemma 3.14. Gpd(1,2) has products, given by G × G′ =
(
G(1) ×G′

(1), G(2) ×G′
(2)

)
, and

where the structural isomorphisms

ψ(x,x′) : AutG(2)×G
′

(2)
((x, x′))

≃
−→ AutG(2)×G

′

(2)
((0, 0′))

are given by ψx × ψx′, and the quotient function

(G×G′)(2)0 = G(2)0 ×G′
(2)0

q×q′

����
Star(G×G′)(1) = StarG(1) × StarG′

(1)

is the product of the quotient functions for G and G′.

Lemma 3.15. The fundamental 2-track groupoid preserves products:

Π(1,2)(X × Y ) ∼= Π(1,2)(X)× Π(1,2)(Y ).

4. 2-tracks in a topologically enriched category

Throughout this section, let C be a category enriched in (Top∗,∧). Explicitly:

• For any objects A and B of C, there is a morphism space C(A,B) with basepoint
denoted 0 ∈ C(A,B).

• For any objects A, B, and C, there is a composition map

µ : C(B,C)× C(A,B) → C(A,C)

which is associative and unital.
• Composition satisfies

µ(x, 0) = µ(0, y) = 0

for all x and y.

We write x ∈ C if x ∈ C(A,B) for some objects A and B. For x, y ∈ C, we write xy = µ(x, y)
when x and y are composable, i.e., when the target of y is the source of x. From now on,
whenever an expression such as xy or x⊗ y appears, it is understood that x and y must be
composable.
By Definition 2.4, we have the ⊗-composition x⊗y for x, y ∈ Π(1)C and deg(x)+deg(y) ≤ 1.

For deg(a) = deg(b) = 1, we have:

ab = (a⊗ δ1b)� (δ0a⊗ b)

= (δ1a⊗ b)� (a⊗ δ0b) .

This equation holds in any category enriched in groupoids, where ab denotes the (pointwise)

composition. Note that for paths ã and b̃ representing a and b, the boundary of the 2-cube

ã⊗ b̃ corresponds to the equation.
Conversely, the ⊗-composition in Π(1)C is determined by the pointwise composition. For

deg(x) = deg(y) = 0 and deg(a) = 1, we have:

(4.1)





x⊗ y = xy

x⊗ a = id�

x a

a⊗ x = aid�

x .
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We now consider the 2-track groupoids Π(1,2)C(A,B) of morphism spaces in C, and we write
x ∈ Π(1,2)C if x ∈ Π(1,2)C(A,B) for some objects A, B of C. By Definition 2.4, composition
in C induces the ⊗-composition:

x⊗ y ∈ Π(1,2)C

if x and y satisfy deg(x) + deg(y) ≤ 2. For deg(x) = deg(y) = 1, x and y are left paths,
hence x⊗ y is well-defined. The ⊗-composition satisfies:

deg(x⊗ y) = deg(x) + deg(y).

The ⊗-composition is associative, since composition in C is associative. The identity
elements 1A ∈ C(A,A) for C provide identity elements 1 = 1A ∈ Π(1,2)C(A,A), with deg(1A) =
0, and x⊗ 1 = x = 1⊗ x.
Let us describe the ⊗-composition of left paths more explicitly. Given left paths a and b,

then a⊗ b is a 2-track from δ0(a⊗ b) = (δa)⊗ b to δ1(a⊗ b) = a⊗ (δb), as illustrated here:

δ0(a⊗b)=δa⊗b

0

0

δ1(a⊗b)=a⊗δb

❄❄❄❄ �#
a⊗b

Definition 4.1. The 2-track algebra associated to C, denoted
(
Π(1)C,Π(1,2)C,� ,⊗

)
,

consists of the following data.

• Π(1)C is the category enriched in pointed groupoids given by the fundamental groupoids(
Π(1)C(A,B),�

)
of morphism spaces in C, along with the ⊗-composition, which de-

termines (and is determined by) the composition in Π(1)C.
• Π(1,2)C is given by the collection of fundamental 2-track groupoids

(
Π(1,2)C(A,B),�

)

together with the ⊗-composition x⊗y for x, y ∈ Π(1,2)C satisfying deg(x)+deg(y) ≤ 2.

Proposition 4.2. Let x, α, β ∈ Π(1,2)C with deg(x) = 0 and deg(α) = deg(β) = 2. Then the
following equations hold:

{
x⊗ (β�α) = (x⊗ β)� (x⊗ α)

(β�α)⊗ x = (β ⊗ x)� (α⊗ x).

Proof. This follows from functoriality of Π(2) applied to the composition maps µ(x,−) : C(A,B) →
C(A,C) and µ(−, x) : C(B,C) → C(A,C). �

Proposition 4.3. Let c, α ∈ Π(1,2)C with deg(c) = 1 and deg(α) = 2. Then the following
equations hold:

{
δ1α⊗ c = (α⊗ δc)� (δ0α⊗ c)

c⊗ δ0α = (c⊗ δ1α)� (δc⊗ α) .
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Proof. Write a = δ0α and b = δ1α, i.e., α is a left 2-track from a to b:

a

0

0

b

❄❄❄❄ �#
α

and note in particular δa = δb. Let α̃ be a left 2-cube that represents α and consider the left
3-cube α̃⊗ c:

⑧⑧⑧⑧{� α̃⊗δc

0

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧ oob⊗δc

�� δa⊗c

??⑧⑧⑧⑧⑧⑧⑧⑧⑧

a⊗δc

⑧⑧⑧⑧⑧⑧⑧⑧⑧

❄❄❄❄[c
b⊗c

⑧⑧⑧⑧
;Ca⊗c

0

0

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

Its boundary exhibits the equality of 2-tracks:

top face � right face = front face

(α⊗ δc)� (a⊗ c) = b⊗ c

(α⊗ δc)� (δ0α⊗ c) = δ1α⊗ c.
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Likewise, for second equation, consider the left 3-cube c⊗ α̃:

⑧⑧⑧⑧{� c⊗b

0

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧ ooc⊗δa

�� δc⊗a

??⑧⑧⑧⑧⑧⑧⑧⑧⑧

δc⊗b

⑧⑧⑧⑧⑧⑧⑧⑧⑧

❄❄❄❄[c
c⊗a

⑧⑧⑧⑧
;Cδc⊗α̃

0

0

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

Its boundary exhibits the equality of 2-tracks:

top face � right face = front face

(c⊗ b)� (δc⊗ α) = c⊗ a

(c⊗ δ1α)� (δc⊗ α) = c⊗ δ0α. �

5. 2-track algebras

We now collect the structure found in
(
Π(1)C,Π(1,2)C,� ,⊗

)
into the following definition.

Definition 5.1. A 2-track algebra A =
(
A(1),A(1,2),� ,⊗

)
consists of the following data.

(1) A category A(1) enriched in pointed groupoids, with the ⊗-composition determined
by Equation (4.1).

(2) A collection A(1,2) of 2-track groupoids
(
A(1,2)(A,B),�

)
for all objects A,B of A(1),

such that the first groupoid inA(1,2)(A,B) is equal to the pointed groupoidA(1)(A,B).
(3) For x, y ∈ A(1,2), the ⊗-composition x ⊗ y ∈ A(1,2) is defined. For deg(x) = 0 and

deg(y) = 1, the following equations hold in A(1):
{
q(x⊗ y) = x⊗ q(y)

q(y ⊗ x) = q(y)⊗ x.

The following equations are required to hold.

(1) (Associativity) ⊗ is associative: (x⊗ y)⊗ z = x⊗ (y ⊗ z).
(2) (Units) The units 1 ∈ A(1), with deg(1A) = 0, serve as units for ⊗, i.e., satisfy

x⊗ 1 = x = 1⊗ x for all x ∈ A(1,2).
(3) (Pointedness) ⊗ satisfies x⊗ 0 = 0 and 0⊗ y = 0.
(4) For x, y, α, β ∈ A(1,2) with deg(x) = deg(y) = 0 and deg(α) = deg(β) = 2, we have:

{
δi(x⊗ α⊗ y) = x⊗ (δiα)⊗ y for i = 0, 1

x⊗ (β�α)⊗ y = (x⊗ β ⊗ y)� (x⊗ α⊗ y)
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(5) For a, b ∈ A(1,2) with deg(a) = deg(b) = 1, we have:
{
δ0(a⊗ b) = δa⊗ b

δ1(a⊗ b) = a⊗ δb.

(6) For c, α ∈ A(1,2) with deg(c) = 1 and deg(α) = 2, we have:
{
δ1α⊗ c = (α⊗ δc)� (δ0α⊗ c)

c⊗ δ0α = (c⊗ δ1α)� (δc⊗ α) .

Definition 5.2. A morphism of 2-track algebras F : A → B consists of the following.

(1) A functor F(1) : A(1) → B(1) enriched in pointed groupoids.
(2) A collection F(1,2) of morphisms of 2-track groupoids

F(1,2)(A,B) : A(1,2)(A,B) → B(1,2)(FA, FB)

for all objects A,B of A, such that F(1,2)(A,B) restricted to the first groupoid in
A(1,2)(A,B) is the functor F(1)(A,B) : A(1)(A,B) → B(1)(FA, FB).

(3) (Compatibility with ⊗) F commutes with ⊗:

F (x⊗ y) = Fx⊗ Fy.

Denote by Alg(1,2) the category of 2-track algebras.

Definition 5.3. Let A be a 2-track algebra. The underlying homotopy category of A is
the homotopy category of the underlying track category A(1), denoted

π0A := π0A(1) = CompA(1).

We say that A is based on the category π0A.

Definition 5.4. A morphism of 2-track algebras F : A → B is a weak equivalence (or
Dwyer-Kan equivalence) if the following conditions hold:

(1) For all objects A and B of A, the morphism

F(1,2) : A(1,2)(A,B) → B(1,2)(FA, FB)

is a weak equivalence of 2-track groupoids (Definition 3.12).
(2) The induced functor π0F : π0A → π0B is an equivalence of categories.

6. Higher order chain complexes

In this section, we construct tertiary chain complexes, extending the work of [3] on sec-
ondary chain complexes. We will follow the treatment therein.

Definition 6.1. A chain complex (A, d) in a pointed category A is a sequence of objects
and morphisms

· · · // An+1
dn // An

dn−1 // An−1
// · · ·

in A satisfying dn−1dn = 0 for all n ∈ Z. The map d is called the differential.
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A chain map f : (A, d) → (A′, d′) between chain complexes is a sequence of morphisms
fn : An → A′

n commuting with the differentials:

· · · // An+1

fn+1

��

dn // An

fn
��

dn−1 // An−1

fn−1

��

// · · ·

· · · // A′
n+1

d′n // A′
n

d′n−1 // A′
n−1

// · · ·

i.e., satisfying fndn = d′nfn+1 for all n ∈ Z.

Definition 6.2. [3, Definition 2.6] Let B be a category enriched in pointed groupoids. A
secondary pre-chain complex (A, d, γ) in B is a diagram of the form:

· · · //
>>

0

✤✤ ✤✤
��

An+2

dn+1 //

0

  
✤ ✤✤ ✤
KS

γn

An+1
dn //

??

0

✤✤ ✤✤
�� γn−1

An
dn−1 //

0

��
✤ ✤✤ ✤
KS

An−1
// · · ·

More precisely, the data consists of a sequence of objects An and maps dn : An+1 → An,
together with left tracks γn : dndn+1 ⇒ 0 for all n ∈ Z.
(A, d, γ) is a secondary chain complex if moreover for each n ∈ Z, the tracks

dn−1dndn+1

dn−1⊗γn +3 dn−10
id�0 +3 0

and

dn−1dndn+1

γn−1⊗dn+1+3 0dn+1

id�0 +3 0

coincide. In other words, the track

O(γn−1, γn) := (γn−1 ⊗ dn+1)� (dn−1 ⊗ γn)
⊟ : 0 ⇒ 0

in the groupoid B(An+2, An−1) is the identity track of 0.
We say that the secondary pre-chain complex (A, d, γ) is based on the chain complex

(A, {d}) in the homotopy category π0B.

Remark 6.3. One can show that the notion of secondary (pre-)chain complex in B coincides
with the notion of 1st order (pre-)chain complex in Nul1B described in [6, §4, c.f. Example
12.3].

Definition 6.4. A tertiary pre-chain complex (A, d, δ, ξ) in a 2-track algebra A is a
sequence of objects An and maps dn : An+1 → An in the category A(1)0, together with left
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paths γn : dndn+1 → 0 in A(1,2), as illustrated in the diagram

· · · //

0

  
An+3

OO

dn+2 //

0

>>
An+2

γn+1��

dn+1 //

0

  
An+1

γn
OO

dn //

0

??
An
γn−1��

dn−1 //

0

��
An−1

OO

// · · ·

along with left 2-tracks ξn : γn ⊗ dn+2 ⇒ dn ⊗ γn+1 in A(1,2), for all n ∈ Z.
(A, d, γ, ξ) is a tertiary chain complex if moreover for each n ∈ Z, the left 2-track:

dn−1 ⊗ γn ⊗ dn+2

dn−1⊗ξn +3 dn−1dn ⊗ γn+1

γn−1⊗γn+1+3 γn−1 ⊗ dn+1dn+2

ξn−1⊗dn+2+3 dn−1 ⊗ γn ⊗ dn+2

is the identity of dn−1 ⊗ γn ⊗ dn+2 in the groupoid A(2)(An+3, An−1). In other words, the
element:

O(ξn−1, ξn) := ψdn−1⊗γn⊗dn+2 ((ξn−1 ⊗ dn+2)� (γn−1 ⊗ γn+1)� (dn−1 ⊗ ξn))

∈ π2A(1,2)(An+3, An−1)

is trivial. Here, ψ is the structural isomorphism in the 2-track groupoid A(1,2)(An+3, An−1),
as in Definitions 3.4 and 3.8.
We say that the tertiary pre-chain complex (A, d, γ, ξ) is based on the chain complex

(A, {d}) in the homotopy category π0A.

Toda brackets of length 3 and 4. Let C be a category enriched in (Top∗,∧). Let π0C be
the category of path components of C (applied to each mapping space) and let

Y0 Y1
y1oo Y2

y2oo Y3
y3oo Y4

y4oo

be a diagram in π0C satisfying y1y2 = 0, y2y3 = 0, and y3y4 = 0. Choose maps xi in C
representing yi. Then there exist left 1-cubes a, b, c as in the diagram

Y0 Y1x1
oo Y2x2

oo
~~

0

✤✤
KS

a

Y3x3
oo

0

`` ✤✤
�� b

Y4.x4
oo

~~

0

✤✤
KS

c

Definition 6.5. The Toda bracket of length 3, denoted 〈y1, y2, y3〉 ⊆ π1C(Y3, Y0), is the set
of all elements in Aut(0) = π1C(Y3, Y0) of the form

O(a, b) := (a⊗ x3)� (x1 ⊗ b)⊟

as above.
Assume now that we can choose left 2-tracks α : a⊗ x3 ⇒ x1 ⊗ b and β : b⊗ x4 ⇒ x2 ⊗ c

in Π(1,2)C. Then the composite of left 2-tracks

(α⊗ x4)� (a⊗ c)� (x1 ⊗ β)
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is an element of Aut(x1 ⊗ b⊗ x4), to which we apply the structural isomorphism

ψx1⊗b⊗x4 : Aut(x1 ⊗ b⊗ x4)
∼=
−→ π2C(Y4, Y0).

The set of all such elements is the Toda bracket of length 4, denoted 〈y1, y2, y3, y4〉 ⊆
π2C(Y4, Y0).
Note that the existence of α, resp. β, implies that the bracket 〈y1, y2, y3〉, resp. 〈y2, y3, y4〉

contains the zero element.

Remark 6.6. For a secondary pre-chain complex (A, d, γ), we have

O(γn−1, γn) ∈ 〈dn−1, dn, dn+1〉

for every n ∈ Z. Likewise, for a tertiary pre-chain complex (A, d, γ, ξ), we have

O(ξn−1, ξn) ∈ 〈dn−1, dn, dn+1, dn+2〉

for every n ∈ Z. However, the vanishing of these Toda brackets does not guarantee the
existence of a tertiary chain complex based on the chain complex (A, {d}). In a secondary
chain complex (A, d, γ), these Toda brackets vanish in a compatible way, that is, the equations
O(γn−1, γn) = 0 and O(γn, γn+1) = 0 involve the same left track γn : dndn+1 ⇒ 0.

7. The Adams differential d3

Let Spec denote the topologically enriched category of spectra and mapping spaces be-
tween them. More precisely, start from a simplicial (or topological) model category of spectra,
like that of Bousfield–Friedlander [9, §2], or symmetric spectra or orthogonal spectra [13],
and take Spec to be the full subcategory of fibrant-cofibrant objects; c.f. [6, Example 7.3].
Let H := HFp be the Eilenberg-MacLane spectrum for the prime p and let A = H∗H

denote the mod p Steenrod algebra. Consider the collection EM of all mod p generalized
Eilenberg-MacLane spectra that are bounded below and of finite type, i.e., degreewise finite
products A =

∏
iΣ

niH with ni ∈ Z and ni ≥ N for some integer N for all i. Since the
product is degreewise finite, the natural map

∨
iΣ

niH →
∏

iΣ
niH is an equivalence, so that

the mod p cohomology H∗A is a free A-module. Moreover, the cohomology functor restricted
to the full subcategory of Spec with objects EM yields an equivalence of categories in the
diagram:

π0Spec
op H∗

// ModA

π0EM
op

?�

OO

H∗

∼=
// Modfin

A

?�

OO

where Modfin
A

denotes the full subcategory consisting of free A-modules which are bounded
below and of finite type.
Given spectra Y and X , consider the Adams spectral sequence:

Es,t
2 = Exts,t

A
(H∗X,H∗Y ) ⇒

[
Σt−sY,X∧

p

]
.

Assume that Y is a finite spectrum and X is a connective spectrum of finite type, i.e., X is
equivalent to a CW-spectrum with finitely many cells in each dimension and no cells below
a certain dimension. Then the mod p cohomology H∗X is an A-module which is bounded
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below and degreewise finitely generated (as an A-module, or equivalently, as an Fp-vector
space). Choose a free resolution of H∗X as an A-module:

· · · // F2
e1 // F1

e0 // F0
λ // H∗X

where each Fi is a free A-module of finite type and bounded below. This diagram can be
realized as the cohomology of a diagram in the stable homotopy category π0Spec:

· · · A2
oo A1

d1oo A0
d0oo A−1 = X

ǫoo

with each Ai in EM (for i ≥ 0) and satisfying H∗Ai ∼= Fi. We consider this diagram as a
diagram in the opposite category π0Spec

op of the form:

· · · // A2
d1 // A1

d0 // A0
ǫ // A−1 = X

Since A• → X is an EM-resolution of X in π0Spec
op, there exists a tertiary chain complex

(A, d, γ, ξ) in Π(1,2)Spec
op based on the resolution A• → X , by Theorem 8.7.

Notation 7.1. Given spectra X and Y , let EM{X, Y } denote the topologically enriched
subcategory of Spec consisting of all spectra in EM and mapping spaces between them,
along with the objects X and Y , with the mapping spaces Spec(X,A) and Spec(Y,A)
for all A in EM; c.f. [3, Remark 4.3] [6, Remark 7.5]. We consider the 2-track algebra
Π(1,2)EM{X, Y }op, or any 2-track algebra A weakly equivalent to it. In the following con-
struction, everything will take place within Π(1,2)EM{X, Y }op, but we will write Π(1,2)Spec

op

for notational convenience.

Start with a class in the E2-term:

x ∈ Es,t
2 = Exts,t

A
(H∗X,H∗Y ) = Exts,0

A
(H∗X,ΣtH∗Y )

represented by a cocycle x′ : Fs → ΣtH∗Y , i.e., a map of A-modules satisfying x′ds = 0.
Realize x′ as the cohomology of a map x′′ : As → ΣtY in Specop. The equation x′ds = 0
means that x′′ds is null-homotopic; let γ : x′′ds → 0 be a null-homotopy. Consider the diagram
in Specop:

· · · // As+2

ds+1 // As+1
ds // As

x′′

��

ds−1 // As−1
// · · · // A0

ǫ // X

ΣtY

Now consider the underlying secondary pre-chain complex in Π(1)Spec
op:

(7.1) · · · //

0

  
As+3

ds+2 //
>>

0

✤✤ ✤✤
�� γs+1

As+2

ds+1 //

0

��
✤ ✤✤ ✤
KS

γs

As+1
ds //

@@

0

✤✤ ✤✤
�� γ
As

x′′ // ΣtY

in which the obstructions O(γi, γi+1) are trivial, for i ≥ s.
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Theorem 7.2. The obstruction O(γ, γs) ∈ π1Spec
op(As+2,Σ

tY ) = π0Spec
op(As+2,Σ

t+1Y )
is a (co)cycle and does not depend on the choices, up to (co)boundaries, and thus defines an
element:

d(2)(x) ∈ Exts+2,t+1
A

(H∗X,H∗Y ).

Moreover, this function

d(2) : Exts,t
A
(H∗X,H∗Y ) → Exts+2,t+1

A
(H∗X,H∗Y )

is the Adams differential d2.

Proof. This is [3, Theorems 4.2 and 7.3], or the case n = 1, m = 3 of [6, Theorem 15.11].
Here we used the natural isomorphism:

Exti,jπ0EM
op(H∗X,H∗Y ) ∼= Exti,j

A
(H∗X,H∗Y )

where the left-hand side is defined as in Example 8.4. Using the equivalence of categories

H∗ : π0EM
op ∼=

−→ Modfin
A
, this natural isomorphism follows from the natural isomorphisms:

π0Spec
op(As+2,Σ

t+1Y ) = HomA

(
Fs+2, H

∗Σt+1Y
)

= HomA

(
Fs+2,Σ

t+1H∗Y
)
.

Cocycles modulo coboundaries in this group are precisely Exts+2,t+1
A

(H∗X,H∗Y ). �

Now assume that d2(x) = 0 holds, so that x survives to the E3-term. Since the obstruction

O(γ, γs) = (γ ⊗ ds+1)� (x′′ ⊗ γs)
⊟

vanishes, one can choose a left 2-track ξ : γ⊗ds+1 ⇒ x′′⊗γs, which makes (7.1) into a tertiary
pre-chain complex in Π(1,2)Spec

op. Since (A, d, γ, ξ) was a tertiary chain complex to begin
with, the obstructions O(ξi, ξi+1) are trivial, for i ≥ s.

Theorem 7.3. The obstruction O(ξ, ξs) ∈ π2Spec
op(As+3,Σ

tY ) = π0Spec
op(As+3,Σ

t+2Y )
is a (co)cycle and does not depend on the choices up to (co)boundaries, and thus defines an
element:

d(3)(x) ∈ Es+3,t+2
3 (X, Y ).

Moreover, this function

d(3) : E
s,t
3 (X, Y ) → Es+3,t+2

3 (X, Y )

is the Adams differential d3.

Proof. This is the case n = 2, m = 4 of [6, Theorem 15.11]. More precisely, by Theorem
9.3, the tertiary chain complex (A, d, γ, ξ) in Π(1,2)Spec

op yields a 2nd order chain complex
in Nul2 Spec

op based on the same EM-resolution A• → X in π0Spec
op. The construction

of d(3) above corresponds to the construction d3 in [6, Definition 15.8]. �

Remark 7.4. The groups Es,t
3 (X, Y ) are an instance of the secondary Ext groups defined in

[3, §4]. Likewise, the next term Es,t
4 (X, Y ) = ker d(3)/ im d(3) is a higher order Ext group as

defined in [6, §15].
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Theorem 7.5. A weak equivalence of 2-track algebras induces an isomorphism of higher Ext
groups, compatible with the differential d(3). More precisely, let F : A → A′ be a weak equiv-
alence between 2-track algebras A and A′ which are weakly equivalent to Π(1,2)EM{X, Y }op.

Then F induces isomorphisms Es,t
3,A(X, Y )

∼=
−→ Es,t

3,A′(FX, FY ) making the diagram

Es,t
3,A(X, Y )

∼=
��

d(3),A // Es+3,t+2
3,A (X, Y )

∼=
��

Es,t
3,A′(FX, FY )

d(3),A′

// Es+3,t+2
3,A′ (FX, FY )

commute. Here the additional subscript A or A′ denotes the ambient 2-track category in
which the secondary Ext groups and the differential are defined.

Proof. This follows from the case n = 2 of [6, Theorem 15.9], or an adaptation of the proof
of [3, Theorem 5.1]. �

8. Higher order resolutions

In this section, we specialize some results of [6] about higher order resolutions to the case
n = 2. We use the fact that a 2-track algebra has an underlying algebra of left 2-cubical
balls, which is the topic of Section 9.
First, we recall some background on relative homological algebra; more details can be

found in [3, §1].

Definition 8.1. Let A be an additive category and a ⊆ A a full additive subcategory.

(1) A chain complex (A, d) is a-exact if for every object X of a the chain complex
HomA(X,A•) is an exact sequence of abelian groups.

(2) A chain map f : (A, d) → (A′, d′) is an a-equivalence if for every object X of a, the
chain map HomA(X, f) is a quasi-isomorphism.

(3) For an object A of A, an A-augmented chain complex Aǫ• is a chain complex of
the form

· · · // A1
d0 // A0

ǫ // A // 0 // · · ·

i.e., with A−1 = A and An = 0 for n < −1. Such a complex can be viewed as a
chain map ǫ : A• → A where A is a chain complex concentrated in degree 0. The map
ǫ = d−1 is called the augmentation.

(4) An a-resolution of A is an A-augmented chain complex Aǫ• which is a-exact and
such that for all n ≥ 0, the object An belongs to a. In other words, an a-resolution
of A is a chain complex A• in a together with an a-equivalence ǫ : A• → A.

Example 8.2. Consider the category A = ModR of R-modules for some ring R, and the
subcategory a of free (or projective) R-modules. This recovers the usual homological algebra
of R-modules.

Definition 8.3. Let A be an abelian category and F : A → A an additive functor. The
a-relative left derived functors of F are the functors La

nF : A → A for n ≥ 0 defined by

(La

nF )A = Hn (F (A•))

where A• → A is any a-resolution of A.
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Likewise, if F : Aop → A is a contravariant additive functor, its a-relative right derived

functors of F are defined by

(Rn
a
F )A = Hn (F (A•)) .

Example 8.4. The a-relative Ext groups are given by

Extn
a
(A,B) := (Rn

a
HomA(−, B)) (A) = HnHomA(A•, B).

Proposition 8.5 (Correction of 1-tracks). Let B be a category enriched in pointed groupoids,
such that its homotopy category π0B is additive. Let a ⊆ π0B be a full additive subcategory.
Let (A, d, γ) be a secondary pre-chain complex in B based on an a-resolution A• → X of
an object X in π0B. Then there exists a secondary chain complex (A, d, γ′) in B with the
same objects Ai and differentials di. In particular (A, d, γ′) is also based on the a-resolution
A• → X.

Proof. This follows from an adaptation of the proof of [3, Lemma 2.14], or the case n = 1 of
[6, Theorem 13.2]. �

Proposition 8.6 (Correction of 2-tracks). Let A be a 2-track algebra such that its homotopy
category π0A is additive. Let a ⊆ π0A be a full additive subcategory. Let (A, d, γ, ξ) be
a tertiary pre-chain complex in A based on an a-resolution A• → X of an object X in
π0A. Then there exists a tertiary chain complex (A, d, γ, ξ′) in A with the same objects Ai,
differentials di, and left paths γi. In particular, (A, d, γ, ξ′) is also based on the a-resolution
A• → X.

Proof. This follows from the case n = 2 of [6, Theorem 13.2]. �

Theorem 8.7 (Resolution Theorem). Let A be a 2-track algebra such that its homotopy
category π0A is additive. Let a ⊆ π0A be a full additive subcategory. Let A• → X be an
a-resolution in π0A. Then there exists a tertiary chain complex in A based on the resolution
A• → X.

Proof. This follows from the resolution theorems [6, Theorems 8.2 and 14.5]. �

9. Algebras of left 2-cubical balls

Proposition 9.1. Every left cubical ball of dimension 2 is equivalent to Ck for some k ≥ 2,
where Ck = B1 ∪ · · · ∪Bk is the left cubical ball of dimension 2 consisting of k closed 2-cells
going cyclically around the vertex 0, with one common 1-cell ei between successive 2-cells Bi

and Bi+1, where by convention Bk+1 := B1.
See Figure 1, which is taken from [6, Figure 3].

Proof. Let B be a left cubical ball of dimension 2. For each closed 2-cell Bi, equipped with

its homeomorphism hi : I
2

∼=
−→ Bi, the faces ∂11Bi and ∂12Bi are required to be 1-cells of the

boundary ∂B ∼= S1, while the faces ∂01Bi and ∂02Bi are not in ∂B, and therefore must be
faces of some other 2-cells. In other words, we have ∂01Bi = ∂01Bj or ∂

0
1Bi = ∂02Bj for some

other 2-cell Bj , in fact a unique Bj, because B is homeomorphic to a 2-disk.
Pick any 2-cell of B and call it B1. Then the face e1 := ∂02B1 appears as a face of exactly

one other 2-cell, which we call B2. The remaining face e2 of B2 appears as a face of exactly one
other 2-cell, which we call B3. Repeating this process, we list distinct 2-cells B1, . . . , Bk, and
Bk+1 is one of the previously labeled 2-cells. Then Bk+1 must be B1, with ek = ∂01B1, since
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a 1-cell cannot appear as a common face of three 2-cells. Finally, this process exhausts all 2-
cells, because all 2-cells share the common vertex 0, which has a neighborhood homeomorphic
to an open 2-disk. �

0
0 0

Figure 1. The left cubical balls C2, C3, and C4.

Proposition 9.2. A left 2-cubical ball ([6, Definition 10.1]) in a pointed space X corresponds
to a circular chain of composable left 2-tracks:

a = a0
α
ǫ1
1−−→ a1

α
ǫ2
2−−→ · · · → ak−1

α
ǫk
k−−→ ak = a

where the sign ǫi = ±1 is the orientation of the 2-cells in the left cubical ball ([6, Definition
10.8]). Moreover, such an expression (α1, . . . , αk) of a left 2-cubical ball is unique up to
cyclic permutation of the k left 2-tracks αi. For example, (α1, α2, . . . , αk) and (α2, . . . , αk, α1)
represent the same left 2-cubical ball. See Figure 2.

Proof. By our convention for the � -composition, a left 2-track α defines a morphism between
left paths α : d01α ⇒ d02α. The gluing condition for a left 2-cubical ball (α1, . . . , αk) based on
a left cubical ball B = B1 ∪ · · · ∪ Bk as in Proposition 9.1 is that the restrictions αi|ei and
αi+1|ei agree on the common edge ei ⊂ Bi ∩ Bi+1. This is the composability condition for
α
ǫi+1

i+1 �αǫii . Indeed, up to a global sign, the sign of Bi is

ǫi =

{
+1 if ei = ∂02Bi

−1 if ei = ∂01Bi

so that we have αǫii : αi|ei−1
⇒ αi|ei and we may take ai = αi|ei. �

ak = a0
α
ǫ1
1 +3 a1

α
ǫ2
2

�$
❇❇

❇❇
❇❇

❇

❇❇
❇❇

❇❇
❇

ak−1

α
ǫk
k

5=sssssssss

sssssssss
a2

α
ǫ3
3z� ⑤⑤

⑤⑤
⑤⑤
⑤

⑤⑤
⑤⑤
⑤⑤
⑤

a4

···

ai ❑❑❑❑❑❑❑❑❑

❑❑❑❑❑❑❑❑❑

a3
α
ǫ4
4

ks

Figure 2. A left 2-cubical ball.
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Theorem 9.3. (1) A 2-track algebra A yields an algebra of left 2-cubical balls ([6, Defini-
tion 11.1]) in the following way. Consider the system Θ(A) :=

(
(A(1,2),⊗), π0A, D,O

)
,

where:
• (A(1,2),⊗) is the underlying 2-graded category of T (described in Definition 5.1).
• π0A is the homotopy category of A.
• q : (A)0 = A(1)0 ։ π0A is the canonical quotient functor.
• D : (π0A)op × π0A → Ab is the functor defined by D(A,B) = π2A(1,2)(A,B).
• The obstruction operator O is obtained by concatenating the corresponding left 2-
tracks and using the structural isomorphisms ψ of the mapping 2-track groupoid:

OB(α1, α2, . . . , αk) = ψa (α
ǫk
k � · · ·�αǫ22 �αǫ11 ) ∈ AutA(2)(A,B)(0) = π2A(1,2)(A,B)

where we denoted a = δ0α1 = δ1αk.
(2) Given a category C enriched in pointed spaces, Θ

(
Π(1,2)C

)
is the algebra of left 2-

cubical balls

(Nul2 C, π0C, π2C(−,−),O)

described in [6, §11].
(3) The construction Θ sends a tertiary pre-chain complex (A, d, δ, ξ) in A to a 2nd order

pre-chain complex in Θ(A), in the sense of [6, Definition 11.4]. Moreover, (A, d, δ, ξ)
is a tertiary chain complex if and only if the corresponding 2nd order pre-chain complex
in Θ(A) is a 2nd order chain complex.

Proof. Let us check that the obstruction operator O is well-defined. By 9.2, the only ambi-
guity is the starting left 1-cube ai in the composition. Two such compositions are conjugate
in the groupoid A(2)(A,B):

α
ǫi−1

i−1 � · · ·�αǫ22 �αǫ11 �αǫkk � · · ·�α
ǫi+1

i+1 �αǫii

=
(
α
ǫi−1

i−1 � · · ·�αǫ11
)
�αǫkk � · · ·�α

ǫi+1

i+1 �αǫii � · · ·�αǫ11 �
(
α
ǫi−1

i−1 � · · ·�αǫ11
)⊟

=β⊟
�αǫkk � · · ·�αǫ11 � β

with β =
(
α
ǫi−1

i−1 � · · ·�αǫ11
)⊟

: ai ⇒ a0. Since A(2)(A,B) is a strictly abelian groupoid, we
have the commutative diagram:

Aut(a0)

ψa0 %%▲▲
▲▲

▲▲
▲▲

▲▲

ϕβ

// Aut(ai)

ψai

��
Aut(0)

so that OB(α1, . . . , αk) is well-defined.
The remaining properties listed in [6, Definition 11.1] are straightforward verifications. �

Appendix A. Models for homotopy 2-types

Recall that the left n-cubical set Nuln(X) of a pointed space X depends only on the n-type
PnX of X [6, §1]. In particular the fundamental 2-track groupoid Π(1,2)(X) depends only
on the 2-type P2X of X . There are various algebraic models for homotopy 2-types in the
literature, using 2-dimensional categorical structures. Let us mention the weak 2-groupoids
of [15], the bigroupoids of [12], the double groupoids of [10], the two-typical double groupoids
of [7], and the double groupoids with filling condition of [11].
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In contrast, 2-track groupoids are not models for homotopy 2-types, not even of connected
homotopy 2-types. In the application we are pursuing, the functor Π(1,2) will be applied to
topological abelian groups, hence products of Eilenberg-MacLane spaces. We are not trying
to encode the homotopy 2-type of the Eilenberg-MacLane mapping theory, but rather as
little information as needed in order to compute the Adams differential d3.
The fundamental 2-track groupoid Π(1,2)(X) encodes the 1-type of X , via the fundamental

groupoid Π(1)(X). Moreover, as noted in Remark 3.13, it also encodes the homotopy group
π2(X). However, it fails to encode the π1(X)-action on π2(X), as we will show below.

A.1. Connected 2-track groupoids. Recall that a category C is called skeletal if any
isomorphic objects are equal. A skeleton of C is a full subcategory on a collection consisting
of one representative object in each isomorphism class of objects of C. Every groupoid is
equivalent to a disjoint union of groups, that is, a coproduct of single-object groupoids. The

inclusion skG
≃
−→ G of a skeleton of G provides such an equivalence. A similar construction

yields the following statement for 2-track groupoids.

Lemma A.1. Let G =
(
G(1), G(2)

)
be a 2-track groupoid.

(1) There is a weak equivalence of 2-track groupoids sk(1)G
∼
−→ G where the first groupoid

of sk(1)G is skeletal.
(2) If G is connected and G(1) is skeletal, then there is a weak equivalence of 2-track

groupoids sk(2)G
∼
−→ G where both groupoids of sk(2)G are skeletal.

In particular, if G is connected, then sk(2)sk(1)G
∼
−→ sk(1)G

∼
−→ G is a weak equivalence between

G and a 2-track groupoid whose constituent groupoids are both skeletal.

Lemma A.2. Let G and G′ be connected 2-track groupoids whose constituent groupoids are
skeletal. If there are isomorphisms of homotopy groups ϕ1 : π1G ≃ π1G

′ and ϕ2 : π2G ≃ π2G
′,

then there is a weak equivalence ϕ : G
∼
−→ G′.

Proof. Since G(1) and G
′
(1) are skeletal, they are in fact groups, and the group isomorphism

ϕ1 is an isomorphism of groupoids ϕ(1) : G(1)
≃
−→ G′

(1).

Now we define a functor ϕ(2) : G(2) → G′
(2). On objects, it is given by the composite

G(2)0 = CompG(2)
q

≃
// StarG(1) = G(1)(0, 0) = π1G //

ϕ1

≃
// π1G

′ = G′
(1)(0, 0) = StarG′

(1) CompG′
(2) = G′

(2)0

q

≃
oo

which is a bijection. On morphisms, ϕ(2) is defined as follows. We have G(2)(a, b) = ∅ when
a 6= b, so there is nothing to define then. On the automorphisms of an object a ∈ G(2)0,
define ϕ(2) as the composite

G(2)(a, a) = AutG(2)
(a)

ψa

≃
// AutG(2)

(0) = π2G //

ϕ2

≃
// π2G

′ = AutG′

(2)
(0′) AutG′

(2)
(ϕ(a)) = G′

(2)(ϕ(a), ϕ(a)).
ψ′

ϕ(a)

≃
oo
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Then ϕ(2) is a functor and commutes with the structural isomorphisms, by construction.
Thus ϕ = (ϕ(1), ϕ(2)) : G → G′ is a morphism of 2-track groupoids, and is moreover a weak
equivalence. �

Corollary A.3. Let G and G′ be connected 2-track groupoids with isomorphic homotopy
groups πiG ≃ πiG

′ for i = 1, 2. Then G and G′ are weakly equivalent, i.e., there is a zigzag
of weak equivalences between them.

Proof. Consider the zigzag of weak equivalences

G G′

sk(1)G

∼

OO

sk(1)G
′

∼

OO

sk(2)sk(1)G

∼

OO

ϕ

∼
// sk(2)sk(1)G

′

∼

OO

where the bottom morphism ϕ is obtained from Lemma A.2. �

By Remark 3.13, the functor Π(1,2) : Top∗ → Gpd(1,2) induces a functor

(A.1) Π(1,2) : Ho (connected 2−Types) → Ho
(
Gpd(1,2)

)

where the left-hand side denotes the homotopy category of connected 2-types (localized with
respect to weak homotopy equivalences), and the right-hand side denotes the localization
with respect to weak equivalences, as in Definition 3.12.

Proposition A.4. The functor Π(1,2) in (A.1) is not an equivalence of categories.

Proof. Let X and Y be connected 2-types with isomorphic homotopy groups π1 and π2,
but distinct π1-actions on π2. Then X and Y are not weakly equivalent, but Π(1,2)(X) and
Π(1,2)(Y ) are weakly equivalent, by Corollary A.3. �

A.2. Comparison to bigroupoids. Any algebraic model for (pointed) homotopy 2-types
has an underlying 2-track groupoid. Using the globular description in Remark 3.1, the most
direct comparison is to the bigroupoids of [12]. A pointed bigroupoid (resp. double groupoid)
will mean one equipped with a chosen object, here denoted x0 to emphasize that it is unrelated
to the algebraic structure of the bigroupoid.

Proposition A.5. Let ΠBiGpd
2 (X) denote the homotopy bigroupoid of a space X constructed

in [12], where it was denoted Π2(X).

(1) There is a forgetful functor U from pointed bigroupoids to 2-track groupoids.
(2) For a pointed space X, there is a natural isomorphism of 2-track groupoids Π(1,2)(X) ∼=

UΠBiGpd
2 (X).

Proof. Let B be a bigroupoid. We construct a 2-track groupoid UB as follows. The first
constituent groupoid of UB is the underlying groupoid of B

UB(1) := π0B
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obtained by taking the components of each mapping groupoid B(x, y). The second con-
stituent groupoid of UB is a coproduct of mapping groupoids

UB(2) :=
∐

x∈Ob(B)

B(x, x0).

The quotient function q : UB(2)0 → StarUB(1) is induced by the natural quotient maps
Ob (B(x, x0)) ։ π0B(x, x0). To define the structural isomorphisms

ψa : Aut(a)
∼=
−→ Aut(cx0)

for objects a ∈ UB(2)0, which are 1-morphisms to the basepoint a : x → x0, consider the
diagram

x @@

a

✤✤ ✤✤
�� λ

a

%%

a

99
✤✤ ✤✤
�� id�a x0

cx0

&&

cx0

88
✤✤ ✤✤
�� α x0

��

a

✤ ✤✤ ✤
KS

λ

where λ : cx0 • a ⇒ a is the left identity coherence 2-isomorphism, • denotes composition of
1-morphisms, and cx0 is the identity 1-morphism of the object x0. (We kept our notation �

for composition of 2-morphisms.) The inverse ψ−1
a : Aut(cx0) → Aut(a) is defined by going

from top to bottom in the diagram, namely

ψ−1
a (α) = λ�

(
α • id�

a

)
�λ⊟.

One readily checks that UB is a 2-track groupoid, that this construction U is functorial, and
that UΠBiGpd

2 (X) is naturally isomorphic to Π(1,2)(X) as 2-track groupoids. �

A.3. Comparison to double groupoids. The homotopy double groupoid ρ�2 (X) from
[10] is a cubical construction. Following the terminology therein, double groupoid will be
shorthand for edge symmetric double groupoid with connection.
Let us recall the geometric idea behind ρ�2 (X). A path a : I → X has an underlying

semitrack 〈a〉, defined as its equivalence class with respect to thin homotopy rel ∂I. A
semitrack 〈a〉 in turn has an underlying track {a}. A square u : I2 → X has an underlying
2-track {u}. A 2-track {u} in turn has an underlying equivalence class {u}T with respect to
cubically thin homotopy, i.e., a homotopy whose restriction to the boundary ∂I2 is thin (not
necessarily stationary). The homotopy double groupoid ρ�2 (X) encodes semitracks 〈a〉 in X
and 2-tracks {u}T up to cubically thin homotopy.

Proposition A.6. Let ρ�2 (X) denote the homotopy double groupoid of a space X constructed
in [10].

(1) There is a forgetful functor U from pointed double groupoids to 2-track groupoids.
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(2) For a pointed space X, there is a natural weak equivalence of 2-track groupoids
Π(1,2)(X)

∼
−→ Uρ�2 (X).

Proof. We adopt the notation of [10], including that compositions in a double groupoid are

written in diagrammatic order, i.e., a+ b denotes the composition x
a
−→ y

b
−→ z. However, we

keep our graphical convention for the two axes:

2

1.

Let D be a double groupoid, whose data is represented in the diagram of sets

D2

∂+1

��

∂−1

��

∂−2 //

∂+2

// D1ǫ2oo

∂+1

��

∂−1

��
D2

ǫ1

OO

∂−1 //

∂+1

// D0ǫoo

ǫ

OO

along with connections Γ−,Γ+ : D1 → D2. Two 1-morphisms a, b ∈ D1 with same endpoints
∂−1 (a) = ∂−1 (b) = x, ∂+1 (a) = ∂+1 (b) = y are called homotopic if there exists a 2-morphism
u ∈ D2 satisfying ∂−2 (u) = a, ∂+2 (u) = b, ∂−1 (u) = ǫ(x), ∂+2 (u) = ǫ(y). We write a ∼ b if a
and b are homotopic.
We now define the underlying 2-track groupoid UD. The first constituent groupoid UD(1)

has object set D0 and morphism set D1/ ∼, with groupoid structure inherited from the
groupoid (D0, D1). The second constituent groupoid UD(2) has object set

UD(2)0 :=
{
a ∈ D1 | ∂

+
1 (a) = x0

}
.

A morphism in UD(2) from a to b is an element u ∈ D2 satisfying ∂−1 (u) = a, ∂−2 (u) = b,
∂+1 (u) = ǫ(x0), ∂

+
2 (u) = ǫ(x0), as illustrated here:

a

b.

x0

x0u

Composition in UD(2) is defined as follows. Given 1-morphisms a, b, c : x → x0 in D1 and
morphisms u : a⇒ b and v : b⇒ c in UD(2), their composition v�u : a⇒ c is defined by

v�u =
(
Γ+(b) +2 u

)
+1 (v +2 ⊙x0)

=
(
Γ+(b) +2 u

)
+1 v

=
(
Γ+(b) +1 v

)
+2 u
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as illustrated here:

a

b

b b

c.

x0

x0

x0

u

vx

x

The identity morphisms in UD(2) are given by id�

a = Γ−(a). The inverse of u : a ⇒ b is
given by

u⊟ =
(
(−1)Γ

+(b) +2 (−1)u
)
+1

(
ǫ2(a) +2 Γ

−(a)
)

=
(
(−1)Γ

+(b) +2 (−1)u
)
+1 Γ

−(a)

as illustrated here:

b

a

bb

a

a

a

a
x0

x0 x0

x0

x0

u

x

x

The structural isomorphisms ψ−1
a : Aut(ǫ(x0)) → Aut(a) are defined by

ψ−1
a (u) =

(
Γ−(a) +2 ⊙x0

)
+1 (⊙x0 +2 u)

= Γ−(a) +1 u

= Γ−(a) +2 u

as illustrated here:
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a a

a

x0

x0

x0

x0u

The quotient function q : UD(2)0 ։ StarUD(1) is induced by the quotient function D1 ։

D1/ ∼. One readily checks that UD is a 2-track groupoid, and that this construction U is
functorial.
For a pointed space X , define a comparison map Π(1,2)(X) → Uρ�2 (X) which is an isomor-

phism on Π(1)(X), and which quotients out the thin homotopy relation between left paths
in X and the cubically thin homotopy relation between left 2-tracks. This defines a natural
weak equivalence of 2-track groupoids. �
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